线性资本王淮:AI泡沫将在今年达到顶峰 创业的机会是AI+金融领域
“线性资本才成立两年多,投的都是早期项目,如果现在就产生一家独角兽那也太不健康了。”
成为投资人后,王淮习惯了往返于京上广出差看项目,而之所以这么说,是因为他曾经给自己定下一个小目标:投出两家十亿美金的独角兽。
虽然进入收割期还为时尚早,但是王淮和京东原高管张川共同创立的线性资本已经投出了地平线机器人、Rokid、PING++等超过30个项目,点融已经是独角兽,同盾也是高速发展中的准独角兽。他说,线性资本每投1块钱,都做好了在未来继续跟进投入1-2块钱的准备。对于牛人,他愿意付出足够大的耐心,先勾搭起来,并希望成为最懂闷骚的科技极客的投资人。
线性资本成立于2014年9月,主要关注泛智能、大数据领域的技术驱动型早期项目。近日,Harry王淮接受了小饭桌专访,聊了聊人工智能的行业机会和泡沫,以及他特有的投资方法论,以下为自述。
阵风,还是季风?
线性资本在人工智能领域投了很多项目,但从商业角度看,这两年人工智能还没有出现成功商业化的案例,它到底是阵风还是季风我们也是不确定的。
说人工智能有可能是阵风的原因是,很多问题创业公司是解决不了的。
以自动驾驶为例,去年我们组织了一次内部讨论,找来了全球领先的汽车零部件供应商法奥雷集团,又找来了四家传统车产研究院的院长,还有百度、腾讯自动驾驶相关的负责人,智能汽车相关的创业公司。最后我们讨论出的结果是:自动驾驶的水太深,项目初始投资动辄都是从千万美金起。但是如果真正想搞自动驾驶汽车的话,整个事情做下来没有上百亿人民币砸下去是出不了好东西的。
所以自动驾驶这块技术人员创业的问题在于:一方面考验的是你后续的融资能力,另一方面是,在创业初期的很长一段时间里是出不了东西的。
但是,如果有特别核心的技术、精悍的团队,从天使轮最多到A轮我们是可以参与的,这里参与的角度在自动驾驶的局部技术,比如用车环境下的识别技术,人车的交互等。
从长远来看,自动驾驶在未来是没有悬念的,但早期投资很难发现特别适合的团队。以传统车厂中出来的技术大牛为主,再配合深度学习的人才,这样的团队会比较好,但是目前我们找到的团队都是相反的。
总的来说,人工智能的赛道够长,从投资的角度来看就像阵风,但是从趋势来看很明显是季风。
更加激进投资AI+医疗
过去几年,我们投了神策数据、桃树、观数这种AI+商业的项目,它在某种方式上能够帮助用户更好更快地做出决策。像神策能够帮助用户做数据整理、漏斗分析,而桃树主要是给银行做贷后风控,给电商做选品分析。
AI创业的另一个机会是AI+金融领域。它其实技术整合难度不高,难点在于进入金融场景和获得资产和客户的能力。因为这个领域重监管,很敏感。
AI+Fintech我们也很关注,并且投出了同盾这样的项目。另外,区块链的项目我们虽然没有投过但是一直在关注,它的优势在于分布式、去中心,还能保障账本的可靠性。但它究竟能带来什么样的具体应用是个大问题,比特币只是一种应用,创业公司可以去关注这里面的加密技术、性能的提高等。
在AI+医疗方面,比如AI看图,过去我们偏保守了,但是今年我们会更加激进。在决定要不要投时,一方面我会看重团队的技术能力和互补性,另一方面团队的商务拓展能力在医疗领域特别重要。
现在AI看图的效率和准确率已经比人工看图高得多,但它的发展速度从技术研究到商业化不会超过六个月,错过这个档口就晚了。如果通过技术手段让医生诊断看片子的水平提高到世界一流水平,这将会对医院有很大的促进作用。
AI+工业自动化这块也是一个点,比如仓储机器人自动化,虽然有好多家在做,但每家切入的点不一样,各有优劣势。
另外,我们会把20%的时间和金钱投在AI、AR/VR里的核心技术,但是不会投平台。比如AI是一个计算密集型而不是存储密集型的领域,针对它的特殊化云计算项目我们就比较感兴趣。正在考虑投的一个项目就是利用AI技术来给数据中心做工作编排的优化,一年已经帮谷歌省掉至少十亿美金,像这种把AI加到一个比较窄的点上就很好,它们普遍的特点是能够迅速产生效果,战斗力极强。
AI泡沫将在今年达到顶峰
现在的AI创业,大家都在闭着眼睛投。
大概去年四五月份的时候一批AI创业公司开始拿到闭着眼睛投的钱了,这时被资本堆起来的泡沫就起来了,且会在今年达到顶峰。但是一般公司融到的钱能花12—18个月,忍一忍可能24个月,如果能融到下一轮就是还不错的公司。
这时,拿到很高估值的公司总要证明一下自己拿完钱后做出什么东西来了,如果做不出东西来很多资本是要撤出的,只有真正对项目理解很深又比较谨慎的投资机构才有可能坚持下来,所以今年会是一个清洗泡沫的过程。
这时考验创业者的主要有两个方面。
第一个是商务拓展。从初始的几十个客户到几百几千个客户是一个大坎,能跳过这个大坎的,通常说明这个市场是有机会做起来的,而很多创业者自己想出来的应用场景是很难迈过这个坎的。
另一个问题是,AI最后是要跟业务场景结合的,所以有没有能力把项目应用到大的场景中是很重要的。就像中科视拓的人脸识别技术最终还是要应用到安防、机场、银行、小区里。
这轮泡沫清洗完之后,AI创业才会是一个健康的发展方式,但不排除第二波非理性投资人的入场。
其实我们是希望这个领域不要那么火爆,因为真的没有那么多可投的好项目:能干的人蛮多,但大部分不适合创业。
在AI领域,智能投顾一看就很扯,尤其是2C的投顾。但是如果利用处理数据的能力,帮助用户提高决策质量,把产品卖给券商、分析师这样的B端其实还是有机会的。
另外智能家居设计也是比较扯的,说的好像很悬乎,但实际上都是一些规则系统,就像沙发旁边应该放一个茶几一样,谈不上有什么智能设计。
直接找过来的项目一般不碰
我们一般是通过熟悉的人去推荐人才,直接找过来的项目一般不碰,因为相信信任的传递。比如我们投的Seeta中科视拓,我跟创始人山世光老师认识了快两年,他有近20年的人脸识别研究经验,后来他决定创业时,我们还去研究所跟领导谈了一次,最终决定投资后就把他所在的实验室商业化了。
总的来说看项目的时候,我会特别注重“三高”人群:高学历、高平台、高学习能力。这样的人群主要分成四类:
第一类主要是在BAT有过大数据经验;第二类是海归,像Facebook、谷歌、微软、IBM出来的人;第三类是学术大牛,比如国内高校的教授,国外顶尖实验室的华人;第四类是校友,浙大还有斯坦福,这两个学校加起来可能投了有十家。
在看项目的时候对技术水平和人的考量会各占一半。
因为假设一个项目的行业机会和市场机会都很大,但是团队里没有特别有影响力的人,首先组建团队的时候就会很困难。如果不是和AI领域的牛人创业,人家为什么要加入你呢?如果只是高薪挖来人,那么人来得快去得也快,创业公司最怕的就是这种。
第二个问题是拓展市场,创始人初期会自己去跑项目,如果没有行业积累和影响力,初期的单子很难搞定下来。长期来看,还是需要借鉴IBM、甲骨文、微软的销售方式,把大的单子做起来。项目发展到后期,就是看商业模式的可复制性了。
第三个问题是募资能力。创始人要让投资人明白项目能解决什么问题,怎么解决问题。我们看项目的时候会对技术研究的比较仔细,最夸张的会仔细到代码这个层面。当初投桃树的时候我就跟创始人杨滔讨论了一下午的代码,这种从粗到细都很强的人对投资人来说很难得。
决定投项目之前,我们会和团队进行至少三次会议讨论,弄清它的上下游,合作伙伴、产业环境等,并对团队、技术、产品、市场、运营、资本使用这六个方面做探讨。之后再考量项目解决的问题,这个问题带来的市场机会,还有这群人的历史背景适不适合解决这些问题。